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I. I NTRODUCTION

All amorphous solids , metall ic arid non-metal l ic, are  actually in

states which a re  con.figurationall y f rozen , a particula r confi gurat ion being

specif ied by the short range order , both topological (TSRO) and

compositional (CSRO), and its spatial  distribution. Consequently, at any

given composition , temperature and p ressure  a glass may exhibit , depending

upon its his tory,  a variet y of confi gurationally f rozen  states. I t  will tend

to relax toward some state which will be desi gnated , the ‘ ‘full y- re laxed”

state. According to the continuous random models for  glass s t ruc tu re ,

this state would be a meta stable “ideal glass ’’ . If the glass were actually

microcrystall ine , a possibility now thoug ht to be , in general , unlikely, it

would be a sing le crystal.

I mperfect ions may be defined as deviations in the s t ruc tu re  of the

actua l g lass f rom that of the fully relaxed glass at 0°K. In microcrystal l ine

systems the breaking of translational symmetry  at points , line s or surfaces

would give r ise to the same sharp  s t ructura l  discontinuities which a re  the

fa mil iar  imperfect ions  of poly -macrocrys ta l s .  In contrast , in the absence

of the constra ints  imposed by translat iona l symmetry,  imperfections in

continuous random structures can be, spatially, very diffuse. Such

diffuseness would seem to be a likely feature of metallic s t ructures .  In

covalently bonded random networks there exist sharpe r s t ruc tura l  discon-

t inui t ies  which can be regarded as dang ling bonds , as well as the more

diffuse imperfections resulting f rom abnorma l distort ions of the interatomic

bond ang les f rom their p re fe r red  value .
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In  the f i r st  section of this paper we will review and t ry  to interpret

some of th e evidence , direct and indirect , on the existence and nature  of

imperfect ions in metallic g lasses. This evidence derive s mainly f rom

atomic t ranspor t  and s tructural  relaxation studies. An important question

in the in terpre ta t ion  of these studies is the interrelation and scaling of the

time constants for the various processes , in pa rticular:  T D 
for  diffusive

t r anspor t , for  viscous flow , 
~~~~~~ 

for volume relaxation and T c 
for

crystal growth.

In the second section we will illustrate the diffuseness of the defects

in amorphous metals by demonstrating the collapse of a localized vacancy

created in a two-dimensional dynamic hard sphere system, and speculate

about the extension of this basic idea to other defects in three dimensions.

Finally, some general suggestions will be made about the various

types of rearrangement that are possible at dif ferent  defect sites and their

imp licat ions for the relation between the time constants for atomic

t rans port .

~

— - -- -. ~rJ- — - - ~~~~~~~~~--— - -
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II. SURVEY OF THE EXPE RIMENTAL EVIDENCE

1. Microscopic Homogeneity

The f i r s t , almost obvious , observation that can be made about

amorphous metals is their uniform appearance in the electron or optical

microscope . Sinc e the diffract ion conditions , which make the direct

observat ion of cer ta in defects such as dislocations possible in crystals ,

a re  not present  in amorphous materials , the apparent uniformity of the

electron images does not provide any conclusions about the absence of

defects .  The uniform chemical attack of etchants , howeve r , indicates

that localized sets of defects (equivalent to crystalline grain  boundaries ,

which a re  known to be etched under cer ta in conditions) are not present  in

amorphous metals.

2. Density

The density of amorphous metals is only sli ghtl y less (< 1%) than

that of crystals with a simila r composition . This indicate s that amorp hous

metals do not contain any large numbers  of vacancy-l ike defects  to the

extent that they would result in an appreciable lowering of the density.

Fu r the rmore, it is interest ing to note , as Turnbul l 1 has pointed out ,

that the part ial  atomic volume of the metalloid in t rans i t ion  metal-

metalloid alloys (both amorp hous and crystal l ine)  is approximately equal to

the partial atomic volume of the transi t ion metal .  Combined with the short

metal-metalloid distance and the high degree of chemical SRO in the f i r s t

coordinat ion shell as observed in di f f ract ion studies , this indicate s that the

- a - -
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metal atoms must be packed very closely around the metalloi ’ In other

words:  there  must a correspondingly hi g h degree of topolog ical SRO. The

presence of large numbers  of localized vacancy-like defects would disrupt

this type of SRO and is therefore  unlikely. Diffuse defects , i. e. , small

local per turbat ions  of the SRO are a more likely possibility.

3. Positron Annihilation

This technique is the most direct one available for  investigating

vacancy-like defects in amorphous materials .  In a f i r s t  type of experiment 2 4 ,

the bulk positron lifetime and the ~~-“j  angular correlation in amorphous

samples are  found to be very little different  f rom those in their  crystall ine

counterparts , again indicating the absence of large numbers  of localized

vacancy-like defects in amorp hous systems.  The results  do not rule out

the presence of more diffuse defects.  Fur thermore, the annihilation

spectrum in amorphous systems does not contain a component with a lifetime

typ ical of grain bo undary-type defects , which is observed in crystal l ized

samples. 2 This confirms the absence of localized sets of defects and argue s

against micro-crystal l ine models for  the s t ructure .  In a second type of

experiment5 it was observed that the positron lifetime and the y - y  angula r

correlation in amorphous metals a re  not changed much by cold working.

This is in contrast with the cold working of crystalline materials , which

produces a marked change due to the increased dislocation density. This

indicates that the defects introduced during the inhornogeneous deformation

of amorphous metals can readily annihilate or become very diffuse , and

argue s against the presence of localized dislocation-like defects .

a - -  - - . -
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4. Inhomogeneous Flow

At hig h s t ress  levels (T > lO
_ 2  

x shear modulus)  and low t empera tu res

(T < 0. 6 Tg ) the plastic deformation of amorp hous metals becom’~s loca l ized

in narrow planar shear bands, which produces sharp offsets at the specimen

surface. The macroscopic analogy between these surface steps and the slip

bands formed during plastic deformation of crystals initially led some

investigators 6 ’ to inv oke the presence  of mic roscopically localized line

defects simila r to crystal l ine dislocations to explain the inhomogeneity of

the flow. Subsequent investigations , h owe ver , have not supported this idea

(see previous section on posi I.ron annihi lat ion)  and since then a number of

authors  have shown that the localization of flow in amorphous metals can be

exp lained without r ecourse  to localized dislocations:  the idea of s t ra in

softening due to s t r u c t u r a l  d isorde  ring was f i r s t  introduced by Polk and

Turnbull ; 8 it was made more explicit by Spaepen , who showed tha t the

local softening in the shea r band results f rom a dynamic equi l ibr ium between

the s t r e s s -d r iven  creation of defect sites which produce local shear , and

their annihilation by diffusion-controlled s tructural  relaxation; recently

Argon 10 has shown that , purely on the basis of continuum theory ,  this

mechanism leads to localization of the flow.

5. Atomi c Transpor t

As in crystalline materials , most of the indirect  experimental

evidence about defects derive s f rom studies of atomic t ranspor t .  Each of

the va rious t ranspor t  processes can be character ized by a rate constant (k)

or time constant (T = 1/k): ‘r~ for viscous flow , ‘r D for diffusion,
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. -

for  volume (and hence s t ruc tu ra l)  r elaxation , T
c 

for crystal l izat ion.  The

relat ive magnitudes and the scaling of these time constant s should be

related to the concentrat ion and lifetimes of specific defects .

a . Viscous flow

This type of plastic deformation, which occurs at low stress levels

-2 .(‘r 10 x shear modulus), is homogeneous in nature , 1. e .,  each volum e

element of the specimen contributes to the flow. In the Newtonian viscous

reg ime it can be char ac terized by the shear viscosity ri or a time constant

T~~ 
(
~ n).

Fi gure  1 shows some sets of flow data that a re  typ ical for  the var ious

t empera tu r e  and stability reg imes. Above the melt ing point , the amor phous

phase is stable and its viscosity is low (i~ i0 ”
~~ poise) (set #1). Around

th e glass t rans i t ion t empera ture  Tg~ the amorphous ph ase is sti ll in

metas tab le configurat ional  equilibrium and its viscosi ty r ises steep ly with

falling t empera tu re  due to the rap id increase  in SRO which decreases  the

number  of defect site s that can produce local shear (set  i~Z ) .  Thi s develop-

ment  of the SRO also causes a decrease  in the numb er  of sites available for

confi gurat iona l rear rangement  and hence an increase  in the time necessa ry

for  s t r u c t u r a l  relaxation. Below Tg~ there fore , the amorp hous system is

kinetically f r o z e n  in one par t icular  confi guration , and c reep  exper iments

p e r f o r me d  in this range (sets #4-6)  should represen t  i so-conf igura t iona l

flow. Fur the rmore, in this reg im.e the system is in unstable equ i l ib r ium

with respect  to the metastable configura t ion  appropriate for the temperature ,

and any atomic mobility will cause  configurational relaxation in that

direct ion (i. e. , toward hi gher time constants).  This explains the higher
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viscosity measured  in the repeated set of creep experiments (#6) after they

had been annealed for  some time dur ing the f i r s t  set of measurements (*‘S).

It must be emphasized , howeve r , that although creep experiments can in

princi ple be done iso-confi gurationa lly (the tota l strain , which is roughly

equa l to the f rac t ion  of atoms that moved , is only l0~~~) , the occurrence

of s t ruc tu ra l  relaxation due to therma l annealing during the experiment has

been insuff ic iently recognized. More reliable experiments , in which proper

attention is paid to this problem , a re  necessa ry  to dete r mine that the

measured values of T a re  associated with wel l -character ized

confi gurations .

b. Diffusion

The diffusivity around or below T
g 

is so low (D < IO
.
~~

6 cm 2/sec)

that its measurement becomes quite difficult. Only two investigations have

been ma de so far  (see Fig. 1): Gup ta t a l  16 measured  the diffusivity of

a Ag ’’° t r a c e r  in Pd 81Si 19 (# 10),  and Chen et al . ~~ measured the diffusivity

of Au in PdCuSi samp les with different  annealing treatments (#7-9) .  The

extrapolation of Gupta et al. ‘s results seems to coincide with the measure-

ments of Chen et al. on an as quenched sample (#8). Preannealing of a

samole 1O °K below T allows structural relaxation and leads to a decreaseg
in di f fus ivi ty  by almost two orders  of magnitude (#~ ). This correlates  with

the viscosit” increase observed in c reep  experiments af ter  annealing

(# 5 and 6). One f ea tu re  of these annealing experiments remains somewhat

puzzl ing,  however:  one would expect that more s t ruc tu ra l  relaxation would

have occur red  during the diffusion experiments  in the ‘as quenched’ samples

than dur ing  the preanneal , since the experiments were done at only slig htly
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lower t empera tu res  and for much longer times. It is surprising, there-

fore , that the diffusivi ty  in the ‘as quenched’ samples remains hig h. The

only possible explanation is that the rate of s t ruc tu ra l  relaxation falls

precipitously over a temperature interval of only a few degrees , while

the diffusivity remains essentially unchanged. It is difficult to devise a

structura l argument that would reconcile these two phenomea , and

additional investigation into this question seems to be required.

In spite of this problem , the diffusion results still provide some

useful insights into the relation between the time constants T
1

, TD and

In configurational equilibrium , above T , (
~-9) the diffusivity scales with

the shear viscosit y, in accordance with the Stokes-Einstein relation which

is known to hold at low viscosities (T
D 

= ). Below T
g~ 

T
D 

seems to be

many orders of magnitude smaller than the extrapolation of from the

creep experiments . However , if the activation ene rgy for truly iso-

configurational creep turns out to be larger than what has been measured up

to now, th€ . creep results could possibly be made to coincide with the

diffusion results. The most important observation is concerned with the

relation between the d i f fus ion  rate and the rate of s t r u c t u r a l  relaxation . In

order  to observe measurable  broadening of the concentrat ion profile in a

diffusion experiment , it is necessary to allow seve ral hundred diffusive

jumps per atom. If the time constants for structural relaxation and diffusion

were the sam.~ ( r
V 

ID> ’ one jump per atom would suffice to reach the new

equilibrium structure. However , since in all the experiments the observed

diffusivity remains several orders of magnitude l a rger  than the equil ibr ium

diffusivity (i. e. , in the fully relaxed configuration), the rate of structural

relaxation must be much slower than the diffusion rate , or v >> 1D
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A possible explanation for this difference will be presented af ter  a

discussion of the defect model studies.

Finally, it is worthwhile to note that , as Chen et al. point out ,

the diffusivity of Au in amorphous PdCuSi is much smaller than the

grain boundary diffusivity of Au in crystalline Pd , which argues against

the presence of localized correlated defects such as grain boundaries or

dislocation cores. For this reason the diffusivity in partially

crystallized samples is also found to be higher tha n in fully amorphous

ones.

c. Crystal  growth

As has been pointed out in previous reviews , 
17 , 18 the time

constant for  crystallization or phase separation above Tg sca les as

that for flow or diffusion. This is to be expected if the t ransformation

involves redistribution of the chemical constituents by a diffusion

mechanism T and hence, above Tg~ 
as discussed in the previous

section , ‘r c = =

If no such diffusive transport is necessary,  for examp le in single

phase crystallization without impurity redistribution, the time constant

for crystallization can be much smaller than that for diffusion or flow

T c << T ID’ T~~~. The amount of s tructural  relaxation attending

crystallization below T g is as yet unknown and more experiments are

necessary  to establish the relation between T c and 
~D below Tg~
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III. MODEL STUDIES OF DEFECTS

1. Illustration by Means of a Two-Dimensional Model

a. Two-dimensional amorphous models

In two dimensions , it seems to be impossible to obtain a stable

dense amo rphous a r r a y  of identical particles with an isotrop ic interaction

potential. At least empirically, all observed dens e a r rays  of identical

hard spheres , 
19 soap bubbles 2° or magnetic bubbles 21 are  made up

of hexagona l crysta ls .  This is in contrast  with the three-dimensional

case , where a stable dense amorp hous a r r a y  of identical particles does

exist, as exemplified by the dense random packing of hard spheres, 
22

which is topologically distinct from the crystalline close packed a r r a y s .

Although no rigorous proof for this difference between two- and three-

dimens io nal packing has been given , it can be made plausible as follows.

In three  dimensions , the densest possible local confi gurat ion is a

tetrahedral arrangement of four particles. Further local close packing

of these tetrahedra leads to tu e formation of units with fivefold rotational

sym’netry. This in turn precludes translational syminetry and leads to

the formation of an amorphous array. In other words: the basic feature

of the dense random packing is its maximum short range densjfl~2 The

close packed crystalline structures are those of maximum long range

density.  The short  range packing in these s truc tures  is quite distinct

from that in the amorphous structure , since it requires the inclusion of a

large number of octahedra.
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In two dimensions , the densest possible local configuration is a

triangle. Local close packing of these triangles , however , leads to the

formation of hexagonal units, which is precisely what is needed to form

a crystalline array. No distinct amorphous array can be formed. Or in

summary: in two dimensions, the requirements for maximum short

range and long range density coincide; in three dimensions they do not,

and give rise to fundamentally distinct structures.

The only way, therefore, to obtain a two-dimensional amorphous

array is to use a mixture of different particles, e. g., hard spheres of

different sizes. 19 Figure 2a shows an example. Although these ar rays

are similar to the three-dimensional amorphous arrays , in the sense

that they lack translational symmetry, they still retain some special

propertie s on account of their two- dimensionality. This is illustrated

on Fig. 2b , which shows the network formed by connecting the centers

of the Dirichlet (or Wigner-Sei tz)  nei ghbors of Fig. 2a. It is easy to

show that by this procedure the plane is completely and uniquely divided

up in triangles, such that a circle through the vertices of a triangle

contains no other sphere centers. For a very large network, Euler ’s

relation between the numbe r of vertices (V), edges (E), and faces (F)

becomes V - E + F = 0. Since all the faces are triangles F = 2E/3,

23which leads to E = 3V. This means, as has been pointed out before ,

that the average number of Dirichlet nearest  neighbors  is always six.

This is obviously the case for each individual sphere in a crystalline

array. Amorphous arrays contain spheres with different coordination

numbers (5, 6 and 7 in Fig. 2a, e. g.); the average coordination number,

however , must always be six. One might speculate that it is possible to



-12-

characterize the structure of these two-dimensional amorphous a r r a y s

by the distribution of the coordination numbers around six.

b. Dynamic hard sphere experiments

In order to study the defects in these two-dimensional amorphous

arrays a dynamic hard sphere simulator was used, similar to the one

described by Turnbull and Cormia. 24 The apparatus consists of an

horizontal 11’’ diameter tray, with a flat glass plate at the bottom. The

tray vibrates vertically with a frequency of 100 Hz. The amorphous array

consisted of a mixture of an equal number of 3/16” brass spheres and

5/32” aluminum spheres. The total number of spheres was around 3000,

which corresponds to a density of about 90% of the (phase separated)

crystalline close packing. The dynamic properties of the system were

analyzed by recording the motion on videotape. On rep lay, still photo-

graphs of the various instantaneous configurations of the sys tem were

obtained.

c. Analysis of the collapse of a ‘vacanc y’

A ‘vacancy ’ in the amorphous array was created by picking out a

sphere wile the system was in motion. This was done for both kinds of

spheres and at a variety of (high) densities. In all these cases it was

observed that the vacancy always collapsed. The free volume created

was immediately redistributed and the vacancy lost its identity as a

localized point defect. This is in sharp contrast with simila r dynamic

hard sphere  observations of vacancies in crystalline a r r ays .  Due to the
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lattice periodicity, the vacancies remain localized and even when they

move , they retain their identity.

Figures  3 to 8 show a sequence of configurations i l lustrat ing this

collapse. Also shown a r e  the corresponding networks formed by

connecting Dirichlet nearest  nei ghbors.  As shown on Fig. 3b , the

creation of a vacancy results in an 8-fold coordination for  one sph ere ,

and a 5-fold coordination for two others to p r e s er v e  the average.  The

same is t rue  for a crystalline vacancy (see Fig. 9) ,  and the presence of

a hi gh coordination number can be taken as character is t ic  for  a localized

vacancy. Indeed , as the subsequent configurations show , the disintegration

of the vacancy corresponds to the disappearanc e of the 8-fold coordination.

It can also be observed that most configurational rearrangements

involve sp heres with a coordination number other than six. They can be

considered as ‘‘ special sites ’’ that contribute to the redistribution of the

vacancy volume. Furthermore, it can be seen that in the later stages of

the collapse sequence the density of the a r r a y  has inc reased , i. e . ,  the

va canc y has not only been redistributed , but has also , at least pa rtially,

been annihilated. This means that some of the “special sites ’’ have long

range elastic strain fields , such that upon rearrangement  at that site ,

the displacements of the local collapse can be t r ans fe r red  to the specimen

boundary.

2. Generalization to Three Dimensions

The previous demonstration-experiment was concerned with a point

(i. e . ,  zero-dimensional)  defect in a two-dimensional amorp hous a r r a y .

Generalization of the conclusions for  three-dimensional a r r ays  and for
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othe r types of defects (one- and two -dimensional) is necessarily quite

speculative since equivalent model experiments have not yet been done ,

but it is possible to make some reasonable predictions .

a. Point defects

Since it is the absence of lattice periodicity which allows the extra

f r e e  volume of a vacancy to be redistr ibuted, one would expect that an

ato mic-s ize  vacancy in a three-dimensional random packing would als o

lose its identity by breaking up in small pa rtia l vacancies , which are in

fact no more than small local per turbat ions  of the SRO. Recent mole-

cular dynamics studies seem to confirm this.  25 Fu r the rmore , the idea

of ‘‘ special sites ’’  with a long range elastic strain field where this extra

f ree  volume can be annihilated is also easily extended to three dimensions.

b. Line defects

As d isc usse d above , the format ion of localized shear bands during

plastic deformation of amorp hous metals at high s t resses and low

t empera tu res  does not necessar i ly mean that they are  formed by the

equiva lent of m crosco pically localized crystalline dislocations. In fact ,

because of c onfi gurat ional  rear rangements  made possible by the lack of

t ranslat ional  symmetry  it is likely that such a defect , when created

‘ar t i f ic ial ly ’ in  a model system , would also become diffuse and lose its

ident i ty .  One can imagine creating such an ‘ar t i f ic ia l’  microscopic

dislocation in an amorphous model by the continuum procedure of making

a planar cut th roug h half the model and displacing the material  on one

side by a B u r g e r s  vecto r on the order  of an atomic diameter . Provided
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the cut can then be rejoined (which is by no means certain , since

translational symmetry, which assures perfect rejoining when creating

a crystalline dislocation this way, is absent here) one obtains a dis-

location which is localized at the end line of the planar cut. It is likely,

however , that this configuration will change as soon as local rearrange-

ments are allowed: small ‘partial vacancies ’ can annihilate at the dis-

location and make it climb , the line can react with the internal stress

fields and be displaced, etc. Since all these rearrangements occur on

an atomic scale, the initially straig ht dislocation line will become very

contorted on the same scale. The concept of a localized core then loses

its meaning. When a stress is applied , the local shear produced by one

individua l little segment of this contorted ‘dislocation ’ is uncorrelated

with that produced by the other segments. It is , therefore, more frui t-

ful  to think of the deformation process  as being governed by the local

shear  of individua l sites , rather than by ih e  correlated motion of a

crystalline - like dislocation line.

c. Planar defects

It is conc eivable that the developm~ent of short range order in

amorphous metals is a process which starts at various points in the

specimen and grows as domains with a different spatial distribution of

short range order (e. g. , direction of tetrahedral stacking for topological

SRO). Where two of these domains meet there must be a transition zone.

In crystalline materials , again, the translational symmetry limits this

zone to a sharp, well def ined g rain boundary plane. 26 
In amorphous metals,

this zone is likely to be more diffuse and can probably be described as a layer

in which som~-~ of the atom.i have imperfect 
SRO, different from that in either

doma in.
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IV. CONC LUSIONS

From the above discussion it becomes clear that the most fruitful

description of defects in amorphous metals is not in terms of localized

point , line or planar defects as in crystals, but as local “special sites ”

where the SRO deviates from that in the “ideal glas s” and therefore

configurational rearrangements are possible . In the case of topological

SRO, this deviation can be characterized by local presence of a certain

small amount of ‘free volume ’, Turnbull and Cohen
27 29 

have described

the redistribution of this free volume and their treatment provides a way

to estimate the number sites with a specific local free volume.

The type of rearrangement at these special sites , however , has

heretofore never been clearly described. It has usually been assumed

that all the defect sites were identical and were  active in all atomic

transport processes. It is suggested here that these special sites are

not necessarily all identical, and that, depending on the details of the

configuration, sites with different types of rearrangement  can be

distinguished.

For example, some of them can have a long range elastic strain

field associated with them. They can annihilate free volume upon re-

arrangement  and are  therefore important for s t ruc tura l  relaxation.

Anothe r set can produc e local shear and contributes to plastic flow.

In homogeneous flow , the viscosity is determined by the concentrat ion of

these sites throughout the volume. If the process is truly iso-

configurational, the steady-state concentration of shear sites is constant.

The lifetimt’ of each individual shear site is probably finite: upon shear

- - _ _ _ _  ~~~. . -
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rea r rangement the f ree  volume disappears locally, i. e .,  the SRO is

restored and the site ceases to be a defect. The f r ee  volume , however ,

is not annihilated: it is redistributed and it combines with other

‘fragments ’ to form new shear sites at other locations , resulting in a

constant steady-state concentration. In inhomogeneous flow, a dynamic

equilibrium is established between the creation of more shear sites due

to stress-induced dilatation and the annihilation of these sites by

structural relaxation. This leads to localization of the flow in a narrow

band, where the shear site concentration is much hig her and the viscosity

much lower than in the bulk of the specimen.

A third set of sites are those which upon rear rangement  lead to a

change in the local neares t  nei ghbor confi guration and hence contribute

to diffusion. Some of the shear and relaxation sites are  probabl y also

part of this third set: some of the shear and relaxation r e a r r a n g e m en t s

no doubt lead to nearest  nei ghbor switches. The rest  of the set consists

of sites which are loosely enoug h coup led to their sur roundings  that  the

only effect of rearrangement is a nearest neighbor change. In an iso-

configurational diffusion process , again a steady-state concentration of

diffusion sites is established as a result of local disappearance of free

volume upon rear rangement  of a site and its recombination and

reappearance at a new diffusion site. If the process is not iso-

configurationa l , i. e. , if there is concurrent  s t ruc tura l  relaxation , f ree

volume is also being annihilated. This requires  that f ree  volume is

assembled at the ‘ relaxation sites ’ descr ibed in a previous p ar a g r a ph .

It is qu i t e  conceivable that the concentration of relaxation sites , which



-18-

requires the presence of a long range elastic strain field , would be

much smaller tha n the concentration of diffusion sites. This would be

a possible exp lana tion for the observed difference , below Tg~ between

the time constants for diffusion and structural  relaxation (T
D 

<<

In general , it can be concluded that the relation between the time

constants for the various atomic t ransport  processes must be determined

by the relative concentrations and lifetimes of these various type s of

‘special sites ’. A more detailed description of the possible rearrange-

ments as a function of the changes in SRO is necessary,  however , to

make the approach quantitative and to allow detailed comparisons with

experiment.
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FIGURE CAPTIONS

Fig. 1: Flow and diffusion data for some amorphous metals.

(Viscosity and diffusivity are scaled by the Stokes-Einstein

relation. )

Flow data:

1) Au 77Si 14Ge 9 melt (8)

2) Pd 77 5Cu 6Si 16 ~ 
equilibrium ( I l )

3) Au 77Si 14Ge
9 

iso-configurationa l (12)

4) Pd80Si20 iso-configurational (?) (13)

5) Co75P25 iso-configurational (?) 1st run (14)

6) Co75?25 iso-configurational (?) rerun (14)

Diffusion data:

7) Au in Pd 77 5Cu6Si16 ~ 
(annealed) (15)

8) Au in Pd77 5Cu6Si16 ~ 
(‘as quenched’) (15)

9) Au in Pd77 5Cu6Si16 ~ 
(equilibrium) (15)

10) Ag in Pd81
Si19 ( 16)

Figs. 2-8: Sequence of configurations i l lustrat ing the collapse of a

‘vacancy ’ created (at t 1 , Fig. 3) in a two-dimensional amorphous

dynamic hard sphere system. The number in the rectangular

frame is the time (in arbitrary units).

(a) Actual confi guration , sho’~~ng the individual sphere positions

in the vicinity of the vacancy. (The total number of spheres

in the system is more than 3000.)

— -~~- 
- - r ~~~~~~~~ 

- - - - -— - r - -~~~.- - —-- — -- - - --- -

I - — - 
.
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(b)  Triangulated net , obtained by connecting the centers of

the Dirichiet neighbors in the configuration of (a). Centers

with 5 , 7 or 8-fold coordination a re  marked.

Fig.  9: Tr iangular  net formed by the Dirichlet nei g hbors  associated

with a vacancy in a two-dimensiona l crystalline (hexagonal)

array, showing the cha racteristic 8-fold coordination. (This

center has been moved infinitesimally towards the center of the

vacancy in order to lift the degeneracy. )
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